150/154 OUTPUT TFT-LCD GATE DRIVE

The μ PD16654 is a TFT-LCD gate driver. Because this gate driver has a level shift circuit for logic input, it can output a high gate scanning voltage in response to a CMOS-level input.

Moreover, it can also drive both the XGA/SXGA panel (154 outputs) and SVGA panel (150 outputs) by changing the number of outputs over between 150 and 154.

FEATURES

- High breakdown voltage output (ON/OFF range: VDD2-VEE2 = 40 V MAX.)
- 3.3 V CMOS level input
- Number of output select function (150/154 outputs)

ORDERING INFORMATION

Part Number	Package
μ PD16654N $-\times \times \times$	TCP (TAB package)

The TCP's external shape is customized. To order your TCP's external shape, please contact an NEC salesperson.

1. BLOCK DIAGRAM

LS (level shifter): Interfaces between 3.3 V CMOS level and VDd2-VEE1 level.
2. PIN CONFIGURATION (μ PD16654N- $-\times \times \times$)

Caution This figure does not specify the TCP package.

3. PIN FUNCTIONS

Pin Symbol	Pin Name	Description
O 1 to O_{154}	Driver output pins	Scan signal output pins that drive the gate electrode of a TFT-LCD. The status of each output pin changes in synchronization with the rising edge of shift clock CLK. The output voltage of the driver is $\mathrm{V}_{\mathrm{dD} 2}$ to $\mathrm{V}_{\mathrm{EE} 2}$.
STVR STVL	Start pulse input/output pin	Input/output pin of the internal shift register. Start pulse signal is read at the rising edge of shift clock CLK and a scan signal is output from the driver output pin. The interface of this terminal is CMOS of 3.3 V . When Osel signal is Low level, start pulse goes up to high level at the 154th falling edge of shift clock CLK and goes down to low level at the 155th falling edge. And when Osel signal is High level, start pulse goes up to high level at the 150th falling edge of shift clock CLK and goes down to low level at the 151st falling edge. The output level is $\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\text {ss }}$ (logic level).
CLK	Shift clock input	Shift clock input for the internal shift register. The contents of internal shift register is shifted at the rising edge of CLK.
R/L	Shift direction switching input	Shift direction switching input pin of the internal shift register. $\begin{aligned} & \mathrm{R} / \mathrm{L}=\mathrm{H} \text { (right shift) : STVR } \rightarrow \mathrm{O}_{1} \rightarrow \mathrm{O}_{2} \cdots \mathrm{O}_{153} \rightarrow \mathrm{O}_{154} \rightarrow \mathrm{STVL} \\ & \mathrm{R} / \mathrm{L}=\mathrm{L} \text { (left shift) } \quad \text { STVL } \rightarrow \mathrm{O}_{154} \rightarrow \mathrm{O}_{153} \cdots \mathrm{O}_{2} \rightarrow \mathrm{O}_{1} \rightarrow \text { STVR } \end{aligned}$
OE1 Oez Оез	Enable input	This pin fixes the driver output to the L level when it is high. However, the shift register is not cleared. And, output enable actuation is asynchronous in the clock. And, refer to "RELATIONS OF ENABLE INPUT AND OUTPUT TERMINAL".
Osel	Number of output select input	Selects the number of outputs. $\begin{aligned} & \text { Osel }_{=L}: 154 \text { outputs (SVGA) } \\ & \text { Osel }_{=H}=150 \text { outputs (VGA, XGA, SXGA) } \end{aligned}$ When Osel $=\mathrm{H}$ (150 outputs), O_{76} through O_{79} outputs of the shift register are fixed to the $\mathrm{V}_{\text {EE2 }}$ level. Fix this pin to $\mathrm{V}_{\mathrm{Cc}}\left(\mathrm{V}_{\mathrm{DD} 2}\right)$ or $\mathrm{V}_{\mathrm{ss}}\left(\mathrm{V}_{\mathrm{EE} 1}\right)$ on TCP.
VDD2	Positive power supply for driver	Shared with internal logic and driver
Vcc	Reference power supply	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$. Reference power supply for level shifter: LS
Vss	Ground (GND)	Connect this pin to the system ground.
$\mathrm{V}_{\mathrm{EE} 1}$	Negative power supply for internal logic	Negative power supply for internal logic
VeE2	Negative power supply for driver	Negative power supply for driver

Caution 1. Power ON/OFF sequence

To prevent the μ PD16654 from damage due to latch up, turn on power in the order $\mathrm{Vcc}_{\mathrm{cc}} \rightarrow \mathrm{V}_{\mathrm{EE}}$, $V_{E E 2}$ and VdD2 \rightarrow logic input. Turn off power in the reverse order. Observe these power sequences even during transition period.

Caution 2. Inserting bypass capacitor

Because the internal logic operates at a high voltage (VDD2-VEE1), insert a bypass capacitor of about $0.1 \mu \mathrm{~F}$ between the respective power pins as shown below to secure the noise margin of V_{I} and VIL^{2}.

Do not input a switching signal to the Osel pin that selects the number of outputs. Connect this pin to Vcc or Vss (VEE1).

4. RELATIONS OF ENABLE INPUT AND OUTPUT TERMINAL

Switching is possible for $154 / 150$ with μ PD16654 by the Osel terminal. And, the output terminal which can be controlled by the enable signal changes as follows along with this function.

154 out TCP		150 out Mode	
154 out Mode $\left(O_{\text {sel }}=\mathrm{L}\right)$	150 out Mode $\left(\mathrm{O}_{\text {sel }}=\mathrm{H}\right)$	154 out Mode (Osel = L)	150 out Mode $\left(\mathrm{O}_{\text {sel }}=\mathrm{H}\right)$
$\mathrm{O}_{1}\left(\mathrm{O}_{\mathrm{E} 1}\right)$	$\mathrm{O}_{1}\left(\mathrm{OEE}_{1}\right)$	$\mathrm{O}_{1}\left(\mathrm{OEv1}^{\text {) }}\right.$	O1 (OE1)
$\mathrm{O}_{2}(\mathrm{OEz})$	$\mathrm{O}_{2}(\mathrm{OEz})$	$\mathrm{O}_{2}(\mathrm{OEz})$	$\mathrm{O}_{2}(\mathrm{OEz})$
$\mathrm{O}_{3}\left(\mathrm{Oез}^{\text {) }}\right.$	$\mathrm{O}_{3}\left(\mathrm{Oеz}^{\text {) }}\right.$	$\mathrm{O}_{3}\left(\mathrm{Oеz}^{\text {) }}\right.$	$\mathrm{O}_{3}\left(\mathrm{Oез}^{\text {) }}\right.$
$\mathrm{O}_{4}\left(\mathrm{OEE}_{1}\right)$	$\mathrm{O}_{4}\left(\mathrm{OEE}_{1}\right)$	$\mathrm{O}_{4}\left(\mathrm{OEx}^{\text {) }}\right.$	$\mathrm{O}_{4}(\mathrm{OE1})$
O5 (ОЕе)	O5 (ОЕе)	O5 (ОЕе)	O5 (OE2)
O_{6} (Оез)	O_{6} (Оез)	O_{6} (Оез)	$\mathrm{O}_{6}\left(\mathrm{O}_{\text {e3 }}\right)$
-	$\stackrel{-}{-}$	$\stackrel{-}{-}$	$\stackrel{-}{\bullet}$
$\mathrm{O}_{72}\left(\mathrm{O}_{\text {E3 }}\right)$	$\mathrm{O}_{72}\left(\mathrm{O}_{\text {E3 }}\right)$	$\mathrm{O}_{72}\left(\mathrm{O}_{\text {E3 }}\right)$	$\mathrm{O}_{72}\left(\mathrm{O}_{\text {ез }}\right)$
$\mathrm{O}_{73}\left(\mathrm{O}_{1}\right)$	$\mathrm{O}_{73}\left(\mathrm{O}_{1}\right)$	$\mathrm{O}_{73}\left(\mathrm{O}_{1}\right)$	$\mathrm{O}_{73}\left(\mathrm{O}_{1}\right)$
$\mathrm{O}_{74}\left(\mathrm{O}_{\mathrm{E} 2}\right)$	$\mathrm{O}_{74}\left(\mathrm{O}_{\mathrm{E} 2}\right)$	$\mathrm{O}_{74}\left(\mathrm{O}_{\mathrm{E} 2}\right)$	$\mathrm{O}_{74}\left(\mathrm{O}_{\mathrm{E} 2}\right)$
O75 (ОЕз)	O75 (ОЕз)	O75 (ОЕз)	O75 (ОЕз)
O76 (OE1)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {EE2 }}$		
O77 (OE 2$)^{\text {) }}$	$V_{\text {out }}=\mathrm{V}_{\text {EE } 2}$		
О78 (ОЕз)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {EE2 }}$		
O79 ($\mathrm{OE1}^{1}$)	$V_{\text {out }}=\mathrm{V}_{\text {EE } 2}$		
О80 (ОЕ2)	О80 (OE1)	$\mathrm{O}_{80}\left(\mathrm{O}_{\mathrm{E} 2}\right)$	O80 (OE1)
O81 (ОЕз)	О81 (ОЕ2)	О81 (ОЕз)	$\mathrm{O}_{81}\left(\mathrm{O}_{\mathrm{E} 2}\right)$
O82 (OE_{1})	О82 (ОЕз)	O82 ($\mathrm{OE1}^{\text {) }}$	$\mathrm{O}_{82}\left(\mathrm{O}^{\text {e3 }}\right.$)
-	$\stackrel{-}{-}$	-	
O150 (Оез)	O150 (OE2)	O150 (Оез)	O150 (OE2)
$\mathrm{O}_{151}\left(\mathrm{O}_{\text {e1 }}\right)$	O151 (Оез)	O151 (OE1)	O151 (Оез)
O152 (OE2)	O152 (Oe1)	O152 (OE2)	O152 (OE1)
O153 (Оез)	O153 (ОЕ2)	O153 (Оез)	O153 (ОЕ2)
$\mathrm{O}_{154}\left(\mathrm{OEx}^{1}\right)$	$\mathrm{O}_{154}(\mathrm{OE} 3)$	O154 (OE1)	O154 (Оез)

5. TIMING CHART

(1) 154 outputs, $R / \bar{L}=H$ Osel $=L$

(2) 150 outputs, $R / \bar{L}=H$ Osel $=H$

O_{76} to O_{79} is L (VEE2) level fixation (150 output).

6. ELECTRIC SPECIFICATION

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, $\left.\mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}\right)$

Parameter	Symbol	Rating	Unit
Supply Voltage	VDD2	-0.5 to +28	V
Supply Voltage	Vcc	-0.5 to +7.0	V
Supply Voltage	$\mathrm{V}_{\mathrm{DL} 2} \mathrm{~V}_{\text {EE1/2 }}$	-0.5 to 42	V
Supply Voltage	$\mathrm{V}_{\text {EE1 }}$	-16.5 to +0.5	V
Supply Voltage	$V_{\text {EE2 }}$	$\mathrm{V}_{\text {EE }}-0.5$ to +0.5	V
Input Voltage	V_{1}	-0.5 to $\mathrm{Vcc}+0.5$	V
Input Current	1	± 10	mA
Output Current	lo	± 10	mA
Operating Temperature Range	TA	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

Recommended Operating Condition ($\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss} 1}=\mathrm{Vss}^{2}=0 \mathrm{~V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD} 2}$	17		25	V
Supply Voltage	$\mathrm{V}_{\mathrm{EE} 1}$	-15		-5.0	V
Supply Voltage	$\mathrm{V}_{\mathrm{EE} 2}$	$\mathrm{~V}_{\mathrm{EE} 1}$		$\mathrm{~V}_{\mathrm{EE} 1}+6.0$	V
Supply Voltage	$\mathrm{V}_{\mathrm{DD} 2}-\mathrm{V}_{\mathrm{EE} 1}$	22		40	V
Supply Voltage	V_{CC}	3.0	3.3	3.6	V

Electrical Specifications ($\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD} 1}=25 \mathrm{~V}$, $\left.\mathrm{V}_{\mathrm{dD} 2}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE} 1}=\mathrm{V}_{\mathrm{EE} 2}=-15 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input voltage, high	V_{H}	$\begin{aligned} & \text { CLK, STVR (STVL), R/L, } \\ & \text { Osel, OE1-OE3 } \end{aligned}$	0.8 Vcc		Vcc	V
Input voltage, low	VIL		Vss		0.2 Vcc	V
Output voltage, high	VOH	STVR (STVL), Іон $=-40 \mu \mathrm{~A}$	Vcc $-0.4{ }^{\text {Note }}$		Vcc ${ }^{\text {Note }}$	V
Output voltage, low	Vol	STVR (STVL), lol $=+40 \mu \mathrm{~A}$	Vss ${ }^{\text {Note }}$		$V \mathrm{ss}+0.4^{\text {Note }}$	V
Output current, high	InOH	$\mathrm{On}, \mathrm{Vn}=\mathrm{V}_{\mathrm{DD} 2}-1.0 \mathrm{~V}$			-1.0	mA
Output current, low	InOL	$\mathrm{On}, \mathrm{Vn}=\mathrm{V}_{\text {EE } 2}+1.0 \mathrm{~V}$	1.0			mA
Output ON resistance	Ron	$\mathrm{Vn}=\mathrm{V}_{\mathrm{EE} 2}+1.0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{dD} 2}-1.0 \mathrm{~V}$			1.0	$k \Omega$
Input leakage current	IIL	V I $=0 \mathrm{~V}$ or 3.6 V			± 1.0	$\mu \mathrm{A}$
Dynamic current	IdD2	Vdd2, fclk $=30 \mathrm{kHz}$, no loads			400	$\mu \mathrm{A}$
	Icc	Vcc1, fclk $=30 \mathrm{kHz}$, no loads			600	$\mu \mathrm{A}$
	Iee	$\mathrm{IEE}+\mathrm{IEE2}, \mathrm{fclk}=30 \mathrm{kHz}$, no loads			800	$\mu \mathrm{A}$

Note The cascade output is at the driver level (Vcc-Vss).

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-20$ to $\left.+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD} 1}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{dD} 2}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE} 1}=\mathrm{V}_{\mathrm{EE} 2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Cascade output delay time	tPHL1	$\mathrm{CL}=20 \mathrm{pF}$				
	CLK \rightarrow STVL (STVR)					

Timing Requirement ($\mathrm{T}_{\mathrm{A}}=-20$ to $\left.+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE} 1}=\mathrm{V}_{\mathrm{EE} 2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Low Period	PWCLK(H)		500			ns
Clock Pulse High Period	PWСLK(L)		500			ns
Enable Pulse low period	PWOE		1.0			$\mu \mathrm{~s}$
Data Setup Time	tsetup	STVR (STVL) $\uparrow \rightarrow$ CLK \uparrow	200			ns
Data Hold Time	thoLD	CLK $\uparrow \rightarrow$ STVR (STVL) \downarrow	200			ns

The rise and fall times of logic input must be $\mathrm{tr}_{\mathrm{r}}=\mathrm{t}=20 \mathrm{~ns}$ (10\% to 90%).
7. SWITCHING CHARACTERISTICS WAVEFORM (R/L=H)

8. RECOMMENDED MOUNTING CONDITIONS

When mounting this product, please make sure that the following recommended conditions are satisfied.
For packaging methods and conditions other than those recommended below, please contact NEC sales personnel.

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to $350^{\circ} \mathrm{C}$, heating for 2 to 3 sec ; pressure 100 g (per solder)
	ACF	Temporary bonding 70 to $100^{\circ} \mathrm{C}$; pressure 3 to $8 \mathrm{~kg} / \mathrm{cm}^{2}$; time 3 to 5 sec. Real bonding 165 to $180^{\circ} \mathrm{C}$; pressure 25 to $45 \mathrm{~kg} / \mathrm{cm}^{2}$, time 30 to 40 secs. (Adhesive (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.)

Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time.

Reference

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades to NEC's Semiconductor Devices (C11531E)
[MEMO]
[MEMO]
[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

